Reflection Electron Microscopy and Spectroscopy for Surface Analysis

Z. L. Wang
Georgia Institute of Technology
Atlanta, Georgia, USA

Published by
Cambridge University Press (May, 1996)
40 West 20th Street, New York, NY 10011-4211

456 pp, ISBN: 0 521 48266 6

Contents
Preface
List of symbols
Introduction
 Historical background
 Scope of the book

Chapter 1. Kinematical electron diffraction
 1.1 Electron wavelength
 1.2 Plane wave representation of incident electron
 1.3 Born approximation and single atom scattering
 1.4 Fourier transformation
 1.5 Scattering factor and charge density function
 1.6 Single scattering theory
 1.7 Reciprocal space and reciprocal lattice vector
 1.8 Bragg's law and Ewald sphere
 1.9 Abbe's imaging theory
 1.10 Phase object approximation
 1.11 Aberration and contrast transfer function

Part A: Diffraction of reflected electrons

Chapter 2 Reflection high-energy electron diffraction
 2.1 Geometry of RHEED
 2.2 Surface crystallography
 2.2.1 Surface reconstruction
 2.2.2 Two-dimensional reciprocal space
Chapter 3. Dynamical theories of RHEED

3.1 Bloch wave theory
3.2 Parallel-to-surface multislice theories I
3.3 Parallel-to-surface multislice theories II
3.4 Perpendicular-to-surface multislice theory
 3.4.1 Multislice solution of Schrödinger equation for transmission electron diffraction
 3.4.2 Applications in RHEED calculations
3.5 Diffraction of disordered and stepped surfaces
 3.5.1 A perturbation theory
 3.5.2 Stepped surface

Chapter 4. Resonance reflections in RHEED

4.1 Phenomenon
4.2 Resonance parabola and resonance condition
4.3 Width of resonance parabola
4.4 Kikuchi envelope
4.5 Dynamical calculations of resonance scattering
 4.5.1 Low incident angle resonance
 4.5.2 High incident angle resonance
 4.5.3 Resonance at stepped Surface
 4.5.4 Steady state wave at surface
4.6 Effect of valence excitation in resonance reflection
 4.6.1 A simplified theory
 4.6.2 Effect on surface resonance
4.7 Enhancement of inelastic scattering signals under resonance condition

Part B: Imaging of reflected electrons

Chapter 5. Imaging surfaces in TEM

5.1 Techniques for studying surfaces in TEM
 5.1.1 Imaging using surface-layer reflections
 5.1.2 Surface profile imaging
 5.1.3 REM of bulk crystal surface
5.2 Surface preparation techniques
5.3 Experimental technique of REM
5.3.1 Mounting specimens
5.3.2 Microscope pre-alignment
5.3.3 Forming REM images
5.3.4 Diffracting condition for REM imaging
5.3.5 Image recording techniques
5.4 Foreshortening effect
5.5 Surface refraction effect
5.6 Mirror-images in REM
5.7 Surface mis-cut angle and step height
5.8 Determining surface orientations
5.9 Determining step direction

Chapter 6. Contrast mechanisms of reflected electron imaging
6.1 Phase contrast
6.2 Diffraction contrast
6.3 Spatial incoherence in REM imaging
6.4 Source coherence and surface sensitivity
6.5 Effect of energy filtering
6.6 Determining the nature of surface steps and dislocations
 6.6.1 Step height
 6.6.2 Down and up steps
6.7 REM image resolution
6.8 High resolution REM
 6.8.1 Imaging reconstructed layer
 6.8.2 Fourier image
6.9 Depth of field and depth of focus
6.10 Double images of surface steps
6.11 Surface contamination

Chapter 7. Applications of UHV REM
7.1 UHV microscope and specimen cleaning
7.2 In-situ reconstruction on clean surfaces
7.3 Surface atom deposition and nucleation processes
7.4 Surface-gas reaction
7.5 Surface electromigration
7.6 Surface ion bombardment
7.7 Surface activation energy

Chapter 8. Applications of non-UHV REM
8.1 Steps and dislocation on metal surfaces
8.2 Steps on semiconductor surfaces
8.3 Ceramics surfaces
8.4 In-situ dynamic processes on ceramics surfaces
8.5 Surface atomic termination and radiation damage
8.6 Reconstruction of ceramic surfaces
8.7 Imaging planar defects
8.8 As-grown and polished surfaces

Part C: Inelastic scattering and spectrometry of reflected electrons

Chapter 9. Phonon scattering in RHEED
9.1 Inelastic excitations in crystals
9.2 Phonon excitation
 9.2.1 Phonons
 9.2.2 Effect of atomic vibrations on crystal potential
 9.2.3 Electron-phonon interactions
9.3 "Frozen" lattice model
9.4 Calculation of Debye-Waller factor
9.5 Kinematical TDS scattering in RHEED
9.6 Dynamical TDS in RHEED
 9.6.1 Reciprocity theorem
 9.6.2 Fourier transform of Green's function
 9.6.3 Green's function theory
 9.6.4 A modified parallel-to-surface multislice theory

Chapter 10. Valence excitation in RHEED
10.1 EELS spectra of bulk crystal surfaces
10.2 Dielectric response theory of valence excitations
10.3 Interface and surface excitations
 10.3.1 Classical energy-loss theory
 10.3.2 Localization effect in surface excitation
10.4 Average number of plasmon excitations in RHEED
10.5 Excitation of a sandwich layer
10.6 Dielectric response theory with relativistic correction
 10.6.1 Maxwell's equations
 10.6.2 Valence excitation near an interface
 10.6.3 Transverse force on incident electron
 10.6.4 Calculation of REELS spectra
10.7 Quantum theory of valence excitation
 10.7.1 Quantum mechanical basis of classical theory
 10.7.2 Density operator and dielectric response theory
10.8 Determination of surface phases
10.9 Multiple scattering effect
10.9.1 Poisson's distribution law
10.9.2 Measurement of electron penetration depth
10.9.3 Measurement of electron mean traveling distance along surface

Chapter 11. Atomic inner-shell excitations in RHEED
11.1 Excitation of atomic inner shell electrons
11.2 Atomic inner shell excitation in reflection mode
11.3 Surface ELNES
11.4 Surface EXELFS
11.5 Surface chemical microanalysis
11.6 Effect of strong Bragg beams
11.7 Resonance and channeling effects
11.8 Effective ionization cross-section
11.9 Impurity segregation at surfaces
11.10 Oxygen adsorption on surface
11.11 REELS in MBE

Chapter 12. Novel techniques associated with reflection electron imaging
12.1 Scanning reflection electron microscopy
 12.1.1 Imaging surface steps
 12.1.2 Imaging dislocations
12.2 Secondary electron imaging of surfaces
12.3 EDS in RHEED geometry
12.4 Electron holography of surfaces
 12.4.1 Principle and theory
 12.4.2 Surface holography
12.5 REM-STM
 12.5.1 Atomic resolution STM image
 12.5.2 Artifacts in STM imaging
12.6 Time-resolved REM and REM-PEEM
12.7 Total-reflection x-ray spectroscopy in RHEED
12.8 Surface wave excitation Auger electron spectroscopy
12.9 LEED and LEEM

Appendix A: Physical constants, electron wavelengths and wave numbers
Appendix B: Crystal inner potential and atomic scattering factor
Appendix C.1: Crystallographic structure systems
Appendix C.2: FORTRAN program for calculating crystallographic data
Appendix D: Electron diffraction patterns of several types of crystal structures
Appendix E: FORTRAN programs
E.1 Single-loss spectra of a thin crystal slab in TEM
E.2 Single-loss REELS spectra in RHEED
E.3 Single-loss spectra of parallel-to-surface incident beam
E.4 Single-loss spectra of interface excitation in TEM

Appendix F: Bibliography of REM, SREM and REELS

References

Index