Breeze-Wind-Energy-Powered Autonomous Wireless Anemometer Based on Rolling Contact-Electrification

Xianpeng Fu, Shaohang Xu, Yuyu Gao, Xiaohan Zhang, Guoxu Liu, Han Zhou, Yi Lv, Chi Zhang,* and Zhong Lin Wang*

ABSTRACT: A triboelectric nanogenerator (TENG) has great advantages in harvesting low-frequency mechanical energy, which is very suitable for energy harvesters and active sensors for breeze wind. Here, we report a breeze-wind-driven autonomous wireless anemometer (W-WA) based on a planetary rolling tribolectric nanogenerator (PR-TENG) for simultaneous wind energy harvesting and wind speed sensing. Benefitting from the planetary rolling friction, the PR-TENG can be activated at a wind speed of less than 2 m/s. At a wind speed of 5 m/s, the W-WA can be continuously powered and autonomously transmit wind speed data in the range of 10 m every 2 min. By integrating the TENG-based micro/nanoenergy harvester and active sensor, this work has realized a complete self-powered intelligent wireless sensing system, which has exhibited broad prospects in distributed micro/nanoenergy, unattended environmental monitoring, and the Internet of things.

Wind as a kind of widely distributed and renewable energy has played a significant role in electric supply and contributed to alleviate the energy crisis.1−6 According to statistics, the exploitable part of global wind energy is up to 5.3 × 10^{13} kWh per year.7−9 On the other hand, the anemometer is a powerful device for wind monitoring and weather forecasting that usually works in unattended environment and needs a long service life. Up to now, the anemometer is mainly supplied by short-term battery, which greatly increases the maintenance cost and environmental pollution.10−13 Therefore, harvesting wind energy from the ambient environment to power the anemometer is an optimal method to realize sustainable operation. As a new energy technology, the triboelectric nanogenerator (TENG) based on Maxwell’s displacement current was first proposed in 201214−16 and has been widely used as an energy harvester17−20 and active sensor.21−23 As an energy harvester, the TENG has a better output performance for harvesting low-frequency and weak mechanical energy compared to a traditional electromagnetic generator,24−28 which can provide sustainable micro/nanopower sources for distributed electronic devices.29−30 As an active sensor, the TENG-based active sensor has the advantages of being lightweight, high flexibility, and an abundant selection of materials compared with the electromagnetic- or piezoelectric-based active sensor. Some TENG-based wind energy harvesters and sensors have been studied to harvest and monitor wind energy effectively.31−34 Although the TENG-based active wind sensor can directly convert wind information into sensing electrical signal without a power supply,35−37 the signal processing and transmission still need an external power supply for this kind of active sensor.38 If a TENG-based wind sensor can be supplied by a TENG-based power source, it is very promising to realize a fully self-powered system for autonomous wind sensing.

Here, we report a breeze-wind-driven autonomous wireless anemometer (W-WA) based on a planetary rolling triboelectric nanogenerator (PR-TENG) for simultaneous wind energy harvesting and wind speed sensing. Benefitting from the planetary rolling friction, the PR-TENG can be activated at a wind speed of less than 2 m/s. The output electric energy from the PR-TENG can be managed as a power supply with a steady...
2.5 V voltage, while the output electric signals from the PR-TENG indicate the wind speed by frequency measurement and calculation. At a wind speed of 5 m/s, the W-WA can be continuously powered and autonomously transmit wind speed data in the range of 10 m every 2 min. By integrating the TENG-based micro/nanoenergy harvester and active sensor, this work has realized a complete self-powered intelligent wireless sensing system, which has exhibited broad prospects in distributed micro/nanoenergy, unattended environmental monitoring, and the Internet of things.

Figure 1 shows the basic structure and working mechanism of the wind-energy-powered autonomous wireless anemometer (W-WA). (A) Framework for the W-WA. The W-WA consists of a planetary rolling triboelectric nanogenerator (PR-TENG), signal processing module (SPM), and energy management module (EMM). (B) Schematic diagram showing the structural design of the stator and rotor. (C) Working principle of PR-TENG. (D) Open-circuit voltages of E-TENG and S-TENG at 5 m/s. (E) Short-circuit transfer charges of E-TENG and S-TENG at 5 m/s.

As shown in Figure 1B, the PR-TENG is fabricated in a rolling free-standing mode with six pairs of finger copper electrodes. Five pairs (A_{1-5} and B_{1-5}) are connected in parallel and used as the output terminal of the E-TENG, and the other pair of electrodes (W_1 and W_2) serves as the output terminal of the S-TENG. The planet carrier and roller are fabricated by 3D printing. The fluorinated ethylene propylene (FEP) film is attached on the surfaces of the roller. When the W-WA is
driven by the breeze wind energy, the planet carrier can rotate counterclockwise, and the rollers roll clockwise on their own axis. Due to the rolling motion between the two triboelectric layers by using the planetary rolling structure, the friction force between the two triboelectric layers can be reduced. The dimension relationship of the stator shell, planet carrier, and roller can be expressed as \(R_s = R_p + R_r \). The detail fabricated process is indicated in Materials and Methods. Benefitting from the almost negligible planetary rolling friction, the W-WA can be activated at a wind speed of less than 2 m/s. By coupling of contact-electrification and in-plane-rolling-induced charge transfer, the working principle of the PR-TENG is shown in Figure 1C. At the initial state, the rollers covered by FEP film contact with the electrode group \(A_{1-5} \) in the matching position, as shown in Figure 1C (I). Electrons will be transferred from copper surfaces to the FEP surfaces due to the different electronegativity. Equal amounts of the positive and negative charges will be generated on the copper and FEP surfaces, respectively. In this state, there is no electron flow through the external circuit. When the rotor rotates counterclockwise driven by the wind, the rollers covered by FEP film will rotate clockwise on their own axis and gradually roll from the matching position with electrode group \(A_{1-5} \) to electrode group \(B_{1-5} \), as shown in Figure 1C (II). The forward current flows from the electrode group \(A_{1-5} \) to the electrode group \(B_{1-5} \) driven by the potential difference for achieving a new electrostatic balance. Until the rollers reach the fully matching position with the electrode group \(B_{1-5} \), nearly all of the positive charges on the electrode group \(A_{1-5} \) will be neutralized by the electrons from the electrode group \(B_{1-5} \), as shown in Figure 1C (III). When the rotor continues to rotate counterclockwise to the electrode group \(A_{1-5} \), the reverse current flows from the electrode group \(B_{1-5} \) to the electrode group \(A_{1-5} \) through the external circuit to reestablish the electrostatic equilibrium, as shown in Figure 1C (IV). Until the rollers arrive at the fully matching position with the electrode group \(A_{1-5} \), all the electrons on the electrode group \(A_{1-5} \) will flow back to the electrode group \(B_{1-5} \) and achieve the electrostatic equilibrium again, as indicated in state I. Electrons flow back and forth between the two electrode groups, generating an AC signal.

When the W-WA is driven by the wind at 5 m/s, 239.75 and 83.11 V open-circuit voltages (\(U_{OC} \)) can be generated by the E-TENG and S-TENG, respectively, as shown in Figure 1D. And 105.31 and 38.37 nC short-circuit transferred charges (\(Q_{SC} \)) can be generated by the E-TENG and S-TENG, respectively, as shown in Figure 1E.

The electrical output characteristics of the E-TENG, as shown in Figure 2, are measured by an air bellow with a wind speed ranging from 2 to 5 m/s. Figure S1 shows the output open-circuit voltage waveforms of the E-TENG. As shown in Figure 2A, the peak-to-peak value of the \(U_{OC} \) increases from 205.45 to 239.98 V when the wind speed increases from 2 to 5 m/s. The output \(U_{OC} \) slightly increases with the increase of the wind speed. The possible reason is the contact force between the FEP layer and copper electrodes increases with the increase of centrifugal force. Figure S2 indicates the output short-circuit
The rate output power with diode operation of E-TENG is temporarily stored in the SPM and transmitter. Figure 2D indicates the circuit diagram with the EMM to provide a steady 2.5 V DC voltage for the E-TENG, which consists of a buck circuit, storage capacitor, and transmitter. At each wind speed, the instantaneous power initially rises and then drops, achieving a maximum value at 7 m/s. As indicated in Figure 2C, the maximum values of the instantaneous power increase with the increase of wind speed. When the wind speed increases from 2 to 5 m/s, the maximum values of the instantaneous power increase from 0.54 to 1.81 mW. The E-TENG shows excellent durability, as shown in Figure S4. The open-circuit voltage is slightly decreased after 6 × 10⁶ cycles at 5 m/s.

The output electrical energy of the E-TENG is regulated with the EMM to provide a steady 2.5 V DC voltage for the SPM and transmitter. Figure 2D indicates the circuit diagram of the EMM, which consists of a buck circuit, storage capacitor, and regulator. The buck circuit consists of a full-bridge rectifier, serial switch S₁, inductor L, parallel freewheeling diode D₁, and capacitor C₁, which are employed to adjust the voltage and impedance of the E-TENG. When S₁ is turned on under the control of the EMM, the output voltage of the E-TENG is temporarily stored in the L-C₁ unit with the snap-off D₁. When the S₁ is turned off, the temporary stored energy in the L-C₁ unit is transferred to the storage capacitor C₂ with the opened D₁. With the continuous operation of S₁, the output electrical energy of the E-TENG can be maximally stored in C₂. The EMM is designed with L = 2.4 mH, C₁ = 10 μF, and C₂ = 15 mF. The charging efficiency can be more dramatically improved with the EMM than with the rectifier. As shown in Figure S5, the stored voltage U₅ can achieve 1.28 V with the EMM after 10 min of charging, while the U₅ is only 0.33 V by direct charging. The stored voltage U₅ can be controlled by the regulator, which consists of a switch S₂ and a voltage stabilizer D₂. When U₅ achieves a certain value, S₂ is turned on, and U₅ is pulled up from zero to a steady voltage. Based on the EMM, the pulse voltage of the E-TENG can be transferred into a steady DC voltage and power for the SPM and transmitter.

Figure 2E shows the waveforms of the U₅ and U₀ with a 100 kΩ load resistance at 5 m/s. When the U₅ exceeds 3.3 V, the switch S₁ is powered on, and the U₀ is pulled from 0 to 2.5 V. At the continuous output electricity of the E-TENG, the U₀ will be pulled down from 2.5 to 0 V after a certain duration time due to the energy consumption on the load resistances. The power-on time with the different wind speeds are indicated in Figure S6 and summarized in Figure 2F. The power-on time reduces with the higher wind speed. When the load resistances are different, the duration times of the U₀ = 2.5 V are different. As shown in Figure 2G, the longer duration time can be maintained with the larger load resistances at 5 m/s. When the load resistances R ≥ 200 kΩ, U₀ can be kept at 2.5 V all the time. Therefore, the rate output power of the EMM can be calculated according to the equation Pₑ = U₀²/R. The rate output power with different wind speeds is summarized in Figure 2H, which indicates the EMM can provide a larger rate output power with faster wind.

Figure 3 shows the wind speed monitoring mechanism and characteristics of the W-WA. The S-TENG is connected with the SPM to monitor the wind speed. When the W-WA is driven by the wind, the SPM can measure the wind speed by counting the signal frequency of the output voltage from the S-TENG. Compared with the peak value of the output voltage, the waveform frequency can better indicate wind speed. The peak value of the output voltage is fluctuating due to the unsteadiness of the surface triboelectric charge quantity, while the waveform frequency measurement can avoid the influence.
of this fluctuation. Figure 3A indicates the circuit diagram of the SPM. The SPM consists of a functional circuit and microprogrammed control unit (MCU). The functional circuit is composed of a resistor R_1, a parallel Zener diode D_3, and two serial resistors R_2 and R_3, which are used to convert the pulse voltage signals of S-TENG into a detectable DC voltage signal. The MCU is employed to analyze the wind speed information from the functional circuit. The reference voltage of the comparator is set to 1.5 V, which is divided from the 2.5 V DC voltage supplied by the E-TENG. When the W-WA is driven by the wind, the pulse voltage signals of S-TENG are converted into a DC voltage signal maintaining a same frequency by the Zener diode. Once the voltage U_1 across the resistor R_3 exceeds the 1.5 V reference voltage, the comparator outputs voltage U_2 and the count increases by one in the counter. With the continuous working of the S-TENG, the wind speed information can be obtained by the MCU according to the count in the counter. The voltage waveforms of the $U_{\text{S-TENG}}$, U_1, and U_2 are summarized in Figure 3B, and their frequencies maintain a good consistency. In the output voltage waveform, each pulse signal of $U_{\text{S-TENG}}$ (highlight in green) is converted into a 5.2 V square wave by the Zener diode D_3, and the 2.88 V square wave U_1 is obtained by dividing it from the 5.2 V square wave. Figure 3C indicates the waveform frequency and standard deviation curve with different wind speeds. The signal frequency has a great linear relationship with the wind speed, indicating that it has superiority for wind speed sensing. The sensitivity of the W-WA can achieve 15.55 Hz/s/m. The W-WA has excellent measurement accuracy, in which the maximal standard deviation is 0.19 m/s with 30 repeated measurements at each different wind speed. The durability of the W-WA is also investigated, as shown in Figure 3D. The waveform frequency of the U_{OC} can steady at 83.9 Hz during the 6×10^6 cycles at 5 m/s. The W-WA exhibits excellent durability.

With the simultaneous wind energy harvesting and sensing, the W-WA can realize the autonomous and sustainable wireless wind speed sensing and data transmission, as shown in Figure 4. The EMM, SPM, and transmitter are integrated with the PR-TENG and indicates a potential application of W-WA for
wind speed monitoring with an unattended and long life, as shown in Figure 4A. Figure S7 shows a simulated wind environmental experiment for the W-WA. The W-WA is driven by an air bellow, and a laptop connected with a receiver is employed as the display terminal 10 m away. The photos of the EMM and SPM are shown in Figure S8. The voltage waveforms of \(U_S\) and \(U_0\) are indicated in Figure 4B when the W-WA is driven by the wind with different speeds. In the starting state, both the \(U_S\) and \(U_0\) are 0 V. When the W-WA is started by the wind at 5 m/s, the value of the \(U_S\) is increasing to 3.3 V in 34.2 min. At the same time, \(U_0\) is stabilized to 2.5 V, and the \(U_S\) immediately drops to 3.12 V, indicating 8.67 mJ of energy is consumed for activating the SPM. The W-WA power-on process is indicated in Movie S1. After activation, the \(U_0\) can be maintained at 2.5 V regardless of the voltage variation of \(U_S\). The sampling and transmitting period of the wind speed data are controlled by the MCU according to the \(U_0\) which is also periodically monitored by the MCU, and the \(U_S\) data is sent for showing the surplus energy. The data are transmitted with 8 bytes and 8.44 mJ of energy consumption. When the W-WA is excited in 5 m/s, \(U_S\) can remain above 3.3 V for the balance between the wind energy harvesting and power consumption in the W-WA. The wind speed and \(U_S\) data are sampled and transmitted every 2 min, as shown in Figure 4B(I) and Movie S2. While when the W-WA is excited at 3 m/s, \(U_S\) can remain above 3.2 V, and the cycle extends to 2.5 min, as shown in Figure 4B(II). The sampling and transmitting cycles are further extended to 3 min for saving energy when 3.0 \(\leq U_S < 3.2\) V, as shown in Figure 4B(III) and Movie S3. Once the wind speed decreases to 0 m/s, the energy stored in the capacitor \(C_3\) is gradually consumed. Until the \(U_S\) decreases to 2.7 V, the \(U_0\) is back to 0 V, and the W-WA turns into the sleep state. If the W-WA is driven and \(U_S\) reaches 3.3 V again, the W-WA can be awake, and \(U_0\) recovers to 2.5 V. As a demonstration, the receiving wind speed and \(U_S\) data during 120 min are summarized in Figure 4C. The display interface of the terminal is shown in Figure 4D, including the measurement wind speed and \(U_S\) data in real time as well as the calculated wind scale and historical wind speed data. The harvested energy by E-TENG can meet the energy consumption for processing, calculating, and transmitting the sensing signal from the S-TENG. With the continuous wind energy, the W-WA can sustainably and autonomously provide the monitoring data by wireless communication, which has broad prospects in distributed micro/nanoenergy, unattended environmental monitoring, and the Internet of things.

MATERIALS AND METHODS

Fabrication of the PR-TENG. The PR-TENG consists of an outer cylindrical shell, two planet carriers, and six rollers. The size of the outer shell is \(100 \times 100\) mm, while the radii of the planet carrier and roller are 37.2 and 12.75 mm. The planet carrier and roller are fabricated by 3D printing. Six pairs of copper electrodes that are 50 \(\mu\)m thick are fabricated with flexible circuit board printing technology, which is fixed at the inner wall of the cylindrical shell to form the stator. The FEP films that are 30 \(\mu\)m thick are attached on the surfaces of the roller. The six rollers are connected with two planet carriers by the bearing to form the rotor. The blade, shaft, and rotor are rigidly connected.

Characterization and Measurement. The air bellow is employed to provide a continuous and speed-controllable wind simulation environment for the W-WA. The software and hardware systems of the W-WA are based on Microsoft Visual Studio and a C8051F410 single-chip microcomputer, respectively. The display interface is designed based on Python software.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.1c00704.

- **Movie S1.** The W-WA power-on and data transmission (AVI)
- **Movie S2.** Data transmission in 2 min cycle at a higher stored energy level (AVI)
- **Movie S3.** Data transmission in 3 min cycle at a lower stored energy level (AVI)
- **Figure S1.** Output signals of \(U_{OC}\) of the E-TENG with different wind speeds; Figure S2. Output signals of \(I_{OC}\) of the E-TENG with different wind speeds; Figure S3. Calculated instantaneous power of the E-TENG with variable resistances; Figure S4. Durability test of the E-TENG at a wind speed of 5 m/s after 6 \(\times 10^6\) cycles; Figure S5. Comparison of direct and managed charging for the storage capacitor at 5 m/s of the E-TENG; Figure S6. The charging waveforms of the storage capacitor with different wind speeds of the E-TENG; Figure S7. Demonstration of the W-WA with an air bellow; Figure S8. The photos of the EMM and SPM (PDF)

AUTHOR INFORMATION

Corresponding Authors

Chi Zhang — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of
Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; orcid.org/0000-0002-7511-805X; Email: czhang@binn.cas.cn

Zhong Lin Wang — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States; orcid.org/0000-0002-5530-0380; Email: zlwang@gate.edu

Authors
Xianpeng Fu — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Shaohang Xu — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Yuyu Gao — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

Xiaohan Zhang — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Guoxu Liu — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Han Zhou — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

Yi Lv — CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsenergylett.1c00704

Author Contributions
*XF. and S.X. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank the support of the National Natural Science Foundation of China (51922023, 61874011), the National Key Research and Development Program of China (2016YFA0202704), the Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF19B02), and the Open Research Foundation of State Key Laboratory of Digital Manufacturing Equipment & Technology (DMETKF2020014).

REFERENCES

