Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO$_2$ Nanowires and Fe$_2$O$_3$ Nanotubes

Peihua Yang, Yong Ding, Ziyin Lin, Zhongwei Chen, Yuzhi Li, Penglei Qiang, Masood Ebrahimi, Wenjie Mai, Ching Ping Wong, and Zhong Lin Wang

ABSTRACT: A low-cost high-performance solid-state flexible asymmetric supercapacitor (ASC) with α-MnO$_2$ nanowires and amorphous Fe$_2$O$_3$ nanotubes grown on flexible carbon fabric is first designed and fabricated. The assembled novel flexible ASC device with an extended operating voltage window of 1.6 V exhibits excellent performance such as a high energy density of 0.55 mWh/cm3 and good rate capability. The ASC devices can find numerous applications as effective power sources, such as powering color-switchable sun glasses and smart windows.

KEYWORDS: Supercapacitor, asymmetric, flexible, MnO$_2$, Fe$_2$O$_3$

The large proliferation of consumer electronics generally required high-energy-density and long-lasting power sources. Among the various energy storage technologies, supercapacitors (SCs) have attracted much attention due to their high power density and exceptionally long cycle life. However, the energy density (E) is usually limited to the operating voltage (V) according to the equation $E = 1/2 CV^2$, where C is the device capacitance. Asymmetric supercapacitors (ASCs) design is an effective approach for extending the operating voltage window and provides effective power sources to meet the demands of emerging technologies. Greatly enhanced performance has kindled the interest of researchers in the field of ASCs designs, such as MnO$_2$/carbon or graphene, MnO$_2$/Fe$_2$O$_3$ graphene-RuO$_2$/graphene, single-walled carbon nanotube (SWCNT)-MnO$_2$/SWCNT-In$_2$O$_3$, CNT-MnO$_2$/CNT-SnO$_2$, graphene-Ni(OH)$_2$/graphene, Co$_3$S$_4$/CoO$_x$/RuO$_2$, CoO$_x$/polyaniline//activated carbon, and polyaniline/WO$_3$@MoO$_3$; but most of them still use liquid electrolytes.

In comparison to liquid electrolyte SCs, solid-state SCs hold many advantages such as environmental friendliness, portability, flexibility, and stability. In this regard, solid-state ASCs have promising applications in durable and flexible electronics. Currently, portable and flexible devices are expected to have a huge market potential and flexible energy storage devices hold the key to realizing portable and flexible electronic devices.

However, solid-state SCs also face some challenges such as low energy density. For instance, SWCNT-based symmetric SC was reported with an energy density of 0.01 mWh/cm3 and TiO$_2$ symmetric SC of 0.05 mWh/cm3. Recently, due to potential broader operating voltage windows people have begun to design ASCs with enhanced performance. For example, Lu et al. developed a solid-state flexible ASC device with hydrogenated TiO$_2$@MnO$_2$ core–shell nanowires (NWs) as the positive electrode and hydrogenated TiO$_2$@C core–shell NWs as the negative electrode. Their device operated at 1.8 V and was able to deliver a high specific capacitance of 139.6 F/g and maximum volumetric energy density of 0.30 mWh/cm3. Despite all these achievements, the facile scalable fabrication of low-cost high-performance solid-state flexible ASCs still remains a challenge.

In the present, transition metal oxides none the dominate the landscape of active materials for electrochemical energy storage. Manganese dioxide (MnO$_2$) has significant predominance such as low cost, abundant resource, and high theoretical specific capacitance (1370 F/g). Iron oxide (Fe$_2$O$_3$) has the advantage of low cost and environmental harmlessness and shows a superior electrochemical performance in negative potential. Therefore, ASCs combined with MnO$_2$ as the positive electrode and Fe$_2$O$_3$ as the negative electrode will become a promising energy storage technology that possesses more economical and environmental superiority. It is carbon-based materials that are commonly applied in one of the electrodes in previously reported ASCs (usually worked as negative electrode); in this work, however, we focused on enhancing the capacitance and energy density of solid-state flexible ASC based on pseudocapacitance in both electrodes. To the best of our knowledge, this is the first report of a new ASC system based on MnO$_2$ and Fe$_2$O$_3$ two very low-cost metal.
oxides synthesized by facile scalable wet chemical methods. The special one-dimensional NW and nanotube (NT) nano-architecture can exert the potential electrochemical performance of the active materials due to their high interfacial area and short ion diffusion path. Uniform MnO2 NWs and Fe2O3 NTs were grown directly on a flexible carbon cloth. The conductive carbon cloth not only served as a lightweight and flexible current collector, but also acted as an excellent scaffold for active materials. The high-performance solid-state flexible ASCs fabricated with low-cost MnO2 NWs (positive electrode) and Fe2O3 NTs (negative electrode) achieved a high energy density of 0.55 mWh/cm2. In addition, the tandem ASCs have been demonstrated to drive a tungsten trioxide (WO3) based electrochemical device, implying the broad potential applications of these flexible ASCs as power sources.

The growth procedures of NW and NT electrodes are illustrated in Figure 1a and the design of ASC is schematically displayed in Figure 1b. Highly ordered MnO2 NWs were synthesized by a hydrothermal approach.28 Figure 2a shows SEM images of as-prepared MnO2 NWs. The carbon fibers were covered by MnO2 NWs with diameters of 100–150 nm and lengths of 2–4 μm. TEM image (Supporting Information Figure S1a) collected from a typical MnO2 nanostructure also confirmed the NW morphology, and selected area electron diffraction (SAED) pattern (inset of Figure 2b) of the NW indicated that the NW was single crystal α-MnO2. The SAED pattern can be indexed as along the beam direction of α-MnO2 zone axis [1 1 1] (the simulated pattern is provided in Supporting Information Figure S1c for comparison). SAED pattern combined with the shadow image (Supporting Information Figure S1b) suggests that the growth direction of this MnO2 NW is very close to the normal direction of the (1 1 2) plane. The lattice fringe spacing was measured to be ~0.69 nm in high-resolution TEM (HRTEM) image (Figure 2b), corresponding to d-spacing of (1 1 0) planes of MnO2. The energy dispersive X-ray spectrometry (EDS) spectrum in Figure 2c shows the existence of elements Mn, O, K, C, and Cu. Signals of C and Cu come from the TEM copper grid, and the signal of K is found because K ions were introduced to the lattice channels of α-MnO2 during synthesis.28 The inductively coupled plasma atomic emission spectroscopy results suggested that the atomic ratio of K to Mn is 0.11:1, very close to the previous reports. As shown in the XRD pattern (Figure 2d), all the diffraction peaks can be indexed to tetragonal α-MnO2 except the crystalline peak at 25.8° coming from carbon fabric substrate. X-ray photoelectron spectroscopy (XPS) analysis (Supporting Information Figure S3a–c) and electron energy loss spectroscopy (EELS) spectrum (Supporting Information Figure S1d) suggested that the Mn valence is close to +4 in the MnO2 NWs product by analyzing both Mn 3s and O 1s data (see the Supporting Information).25,29

A sacrificial template-accelerated hydrolysis method was used to grow Fe2O3 NTs on a carbon fabric.30 ZnO NWs (Supporting Information Figure S2a) grown on carbon fibers were used as original template and immersed in an aqueous solution containing Fe3+ (see the Supporting Information Methods). Figure 3a displays representative SEM image of the well-defined Fe2O3 NTs. The columnar NTs uniformly coated on the carbon fibers with outer diameters ranging from 100 to 200 nm. TEM (Supporting Information Figure S2b) image clearly identifies the nanotube structure. As shown Figure 3b, the HRTEM image and SAED pattern both reveal the amorphous structure of these NTs. A typical high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) image of Fe2O3 NTs is shown in Figure 3c. EDS spectrum confirmed the existence of elements Fe and O (Figure 3d), and the line scanning spectra (inset of Figure 3d and Supporting Information Figure S2c) of Fe2O3 and overall signals across the NT (the line trace is indicated in Figure 3c) can better illustrate the NT configuration. Analysis of the data indicated that the outer and inner diameters of the Fe2O3 NT were about 130 and 50 nm, respectively, in accordance with the HAADF STEM image (Figure 3c).

XPS analysis (Supporting Information Figure S3d–f) and EELS spectrum (Supporting Information Figure S2d) further confirmed the composition of this NT was FeO2.31,32

The electrochemical studies for the MnO2 NWs and Fe2O3 NTs were conducted in a three-electrode configuration. A piece of NW or NT electrode (effective area ~1 cm2) was dipped into 5 M LiCl solution at room temperature for a single electrode test. Ag/AgCl reference electrode and graphite rod counter electrode were used in the measurement. Figure 4a,b shows the cyclic voltammetry (CV) curves of MnO2 positive electrode and Fe2O3 negative electrode at different scan rates, respectively. The good reversibility behavior is manifested in the nearly mirror-image current response on voltage reversal in MnO2 CV curves. A proposed charge storage mechanism of MnO2 electrodes involved a redox reaction between the III and IV oxidation states of Mn accompanying the cation absorption/desorption or intercalation/deintercalation.31 It has been found and generally accepted that Mn(III) in the as-prepared manganese oxide will be oxidized to Mn(IV) during charging and subsequently reduced to Mn(III) during discharging. All of the Fe2O3 CV curves exhibited a semirectangular shape that was indicative of pseudocapacitive behavior. The pseudocapacitance of Fe2O3 might arise from a reversible Fe3+/Fe2+ couple, while the identity of the charge cations involved in the redox reaction was yet undetermined.33 Typical galvanostatic charge/discharge curves of MnO2 and Fe2O3 electrode collected at different current densities are shown in Supporting Information Figure S4. The areal capacitances and the specific capacitances are calculated from galvanostatic charge/discharge curves and shown in Figure 4c. The areal capacitance of the MnO2 and Fe2O3 electrode achieved 150.0 and 180.4 mF/cm2 at a current density of 1 mA/cm2. The specific capacitance corresponded to 197.4 and 257.8 F/g (at an equivalent current density of 1.3 A/g and 1.4 A/g, respectively). The capacitance of MnO2 was much better than the values reported for other manganese oxide composites (111 F/g at 1.8 A/g for 45 min carbon nanoparticles/MnO2 nanorods34 and 170 F/g at 1 A/g for 5 min activated microwave-expanded graphite oxide/MnO2 composite35); meanwhile, the performance of Fe2O3 was better than the previous reported (138 F/g at 1.3 A/g and 173 F/g at 3 A/g36). Even at a high current density of 10 mA/cm2, the areal capacitance of the MnO2 and Fe2O3 electrode retained at 110.4 and

![Figure 1](https://example.com/figure1.png)

Figure 1. (a) Schematic diagram illustrating the synthesis procedure of MnO2 NWs and Fe2O3 NTs on carbon cloth. (b) Schematic sketch illustrating the designed asymmetric supercapacitor device.
119.9 mF/cm², showing good rate capacitance of 73.6 and 66.5%, respectively. The outstanding rate capability could be attributed to the remarkable conductivity of the carbon fabric substrate. According to the electrochemical impedance spectroscopy (EIS) curves in Figure 4d, the equivalent series resistance (ESR) of MnO₂ and Fe₂O₃ electrode was only 3.99 and 4.32 Ω cm², which suggested good conductivity for both positive and negative electrode, benefiting from the excellent conductivity of carbon cloth substrate. Although the conductivity of Fe₂O₃ is better that of MnO₂, probably due to the different loading mass and dimensions, the ESR value of Fe₂O₃ is slightly larger than that of MnO₂.

A solid-state flexible asymmetric SC was assembled with MnO₂ NWs and Fe₂O₃ NTs electrodes using a gel electrolyte (Figure 1b). According to the CV studies for single electrode, an operating cell voltage from 0.8 to 1.6 V was applied to the ASCs. Figure 5a demonstrates the CV curves collected at 100 mV/s in different voltage windows for the MnO₂//Fe₂O₃ solid-state flexible ASC. The fabricated ASC showed a typical capacitive behavior with nearly rectangular CV curves. The flexible ASC demonstrates good performance behavior under different testing conditions (Supporting Information Figure S6), revealing good flexibility and stability. Galvanostatic charge/discharge curves of different current density are shown in Figure 5b. Discharge curves were almost symmetrical to the corresponding charge curves, indicating good capacitive behavior for the ASC device. Figure 5c demonstrates the calculated specific capacitance and volumetric capacitance based on the discharge curves. The solid-state flexible ASC device achieved a high specific and volumetric capacitance of 91.3 F/g and 1.5 F/cm³ at a current density of 2 mA/cm², which was much higher than recent reports for other solid-state ASCs, such as RGO-MnO₂//RGO paper (22.7 F/g at 0.05 mA/cm²)⁴⁸ and VOₓ//VN (52 F/g at 2 mA/cm²).⁴⁹ Furthermore, the solid-state flexible ASC device showed good rate performance with 58.6% of volumetric capacitance retained when the current density increased from 2 to 10 mA/cm², which could be ascribed to the unique nanostructure with large surface area and high electrical conductivity of carbon fabric. Abundant adsorption of ions as well as efficient ion intercalation/deintercalation and charge transport promoted the good rate capability.

Energy density and average power density are two important parameters for the SC device. Figure 5d shows the Ragone plot of our ASC device. The solid-state ASC exhibited a high energy density of 0.55 mWh/cm³, which even can be comparable to the latest report for VOₓ//VN ASC (0.61 mWh/cm³).⁴⁹ Moreover, high power density of 139.1 mW/cm³ was obtained while the energy density was still as high as 0.32 mWh/cm³ at discharge current density of 10 mA/cm². A simple application to light a commercial blue light-emitting diode (LED) was demonstrated. The tandem ASCs (two devices connected in series) could easily light up a blue LED after being charged to 3.2 V (Figure 5d inset). The cycle life of the ASC was tested through a cyclic charge/discharge process at a current density of 2 mA/cm² in different operating voltage window for 6000 cycles (Figure 5e). Although the capacitance retention had obvious fluctuation when the...
potential window changed, the solid-state ASC device still exhibited 84% retention of the initial capacitance after 5000 cycles. That excellent stability might be due to the solid electrolyte, suppressing the dissolution of MnO2 and Fe2O3.

Figure 3. (a) SEM image of Fe2O3 NTs (inset is magnified SEM image). (b) HRTEM image of Fe2O3 NTs (inset is SAED pattern) suggesting amorphous phase. (c) HAADF STEM image of Fe2O3 NTs. (d) EDS spectrum of the Fe2O3 NTs. The insets are EDS line scan curves showing Fe and O element distribution across the Fe2O3 NTs indicated by a line in (c).

Figure 4. CV curves for (a) MnO2 NWs and (b) Fe2O3 NTs collected at different scan rates. (c) Areal and specific capacitance calculated from the charge/discharge curves as a function of current density. (d) Nyquist plots of MnO2 NWs and Fe2O3 NTs electrodes with an area of 1 cm².
the degradation of the capacitance, EIS test was conducted. The ESR of the device increased from 3.9 to 7.4 Ω cm2 after 5000 cycles charge/discharge process (Supporting Information Figure S7). The distortion of charge transport pathway during the long-term cycles might result in the increase of ESR, which was caused by a combined effect of the degradation of the electrolyte, separator, and even the active materials.40

The reversible electrochromic change in transparency has promising applications in smart windows and portable displays.41,42 WO$_3$ is an effective electrochromic material and has been widely studied. Herein, we built an electrochromic system consisting of tandem ASCs and a homemade WO$_3$ smart glass (Supporting Information Figure S8). The WO$_3$ film was directly grown on an FTO glass. SEM and atomic force microscopy images (Supporting Information Figure S9) indicate the film is composed of uniform grain with average grain size of 306 nm and average roughness parameters R_q of 34 nm and R_a of 27 nm.

In a typical electrochromic process, the tandem ASCs were first charged to 3 V and then connected them with the WO$_3$ glass electrode and the Pt reference electrode using 1 M H$_2$SO$_4$ electrolyte. Strikingly, the transparency of the electrode decreased from 79.6 to 5.6% in 5 s after tandem ASCs were connected and backed to 71.2% in 4 s after the polarity of the ASCs was reversely connected. The transmittance spectra are recorded the Figure 5f. The results demonstrate the feasibility that our solid-state ASCs could act as voltage power sources for electrochromic systems. The further integration and miniaturization of ASCs and electrochromic device as stand-alone color-switchable sun glasses and smart windows can find broad applications in energy conservation, environmental protection, and everyday life. As previous literatures reported, SCs can be integrated and charged with other stand-alone power sources such as dye-sensitized solar cells and nanogenerators,43−47 composing an even more promising self-power system.

ASSOCIATED CONTENT

Supporting Information

Supporting Information

AUTHOR INFORMATION

Corresponding Authors

*E-mail: wenjiemai@gmail.com (W.J.M.).
*E-mail: zwang@gatech.edu (Z.L.W.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

P.H.Y acknowledges the financial support from the Jinan University Outstanding Student Program. W.J.M. thanks the National Natural Science Foundation of China (Grants 51102115 and 21376104), the Natural Science Foundation of Guangdong Province, China (Grant S2013010012876), and the China Scholarship Council (Grant 201206785006) for financial support. Z.L.W. thanks the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-M13) for financial support. The authors thank Mr. X. Xiao and Professor J. Zhou from the
REFERENCES

